Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Infect Dis ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20233547

ABSTRACT

BACKGROUND: Serological data on endemic human coronaviruses (HCoVs) and SARS-CoV-2 in southern Africa are scarce. Here, we report on i) endemic HCoV seasonality, ii) SARS-CoV-2 seroprevalence, and iii) predictive factors for SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and HCoV serological response during a 17-month period at the start of the COVID-19 pandemic among adults living with HIV. METHODS: Plasma samples were collected from February 2020 to July 2021 within an outpatient HIV cohort in Lesotho. We used the ABCORA multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS: Results of 3'173 samples from 1'403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter/spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex (p = 0.004), obesity (p < 0.001), working outside the home (p = 0.02), and recent tiredness (p = 0.005) or fever (p = 0.007). Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2, and between older age or obesity and the IgG response to SARS-CoV-2. CONCLUSIONS: These results add to our understanding of the impact of biological, clinical, and social/behavioural factors on serological responses to coronaviruses in southern Africa.

2.
Open Forum Infect Dis ; 10(4): ofad150, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2295825

ABSTRACT

Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%]).

3.
Br J Haematol ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2251131

ABSTRACT

Allogeneic haematopoietic cell transplantation (allo-HCT) recipients show impaired antibody (Ab) response to a standard two-dose vaccination against severe acute respiratory syndrome coronavirus-2 and currently a third dose is recommended as part of the primary vaccination regimen. By assessing Ab titres 1 month after a third mRNA vaccine dose in 74 allo-HCT recipients we show sufficient neutralisation activity in 77% of the patients. Discontinuation of immunosuppression before the third vaccine led to serological responses in 50% of low responders to two vaccinations. Identifying factors that might contribute to better vaccine responses in allo-HCT recipients is critical to optimise current vaccination strategies.

4.
Sci Transl Med ; : eabn7979, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2233623

ABSTRACT

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020 - the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures de-coupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86-98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred, using a phylodynamic model. We found that transmission slowed 35-63% upon outbreak detection in summer 2020, but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

5.
Swiss Med Wkly ; 151: w30092, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-2090688

ABSTRACT

BACKGROUND: Few studies have explored the spread of SARS-CoV-2 in schools in 2021, with the advent of variants of concern. We aimed to examine the evolution of the proportion of seropositive children at schools from June-July 2020 to March-April 2021. We also examined symptoms, under-detection of infections, potential preventive effect of face masks, and reasons for non-participation in the study. METHODS: Children in lower (7­10 years), middle (8­13 years) and upper (12­17 years) school levels in randomly selected schools and classes in the canton of Zurich, Switzerland, were invited to participate in the prospective cohort study Ciao Corona. Three testing rounds were completed in June-July 2020, October-November 2020 and March-April 2021. From 5230 invited, 2974 children from 275 classes in in 55 schools participated in at least one testing round. We measured SARS-CoV-2 serology in venous blood, and parents filled in questionnaires on sociodemographic information and symptoms. RESULTS: The proportion of children seropositive for SARS-CoV-2 increased from 1.5% (95% credible interval [CrI] 0.6­2.6%) by June-July 2020, to 6.6% (4.0­8.9%) by October-November, and to 16.4% (12.1­19.5%) by March-April 2021. By March-April 2021, children in upper school level (12.4%; 7.3­16.7%) were less likely to be seropositive than those in middle (19.5%; 14.2­24.4%) or lower school levels (16.0%; 11.0­20.4%). The ratio of PCR-diagnosed to all seropositive children changed from one to 21.7 (by June-July 2020) to one to 3.5 (by March-April 2021). Potential clusters of three or more newly seropositive children were detected in 24 of 119 (20%) classes, 17 from which could be expected by chance. Clustering was not higher than expected by chance in middle and upper school levels. Children in the upper school level, who were wearing face masks at school from November 2020, had a 5.1% (95% confidence interval 9.4% to 0.7%) lower than expected seroprevalence by March-April 2021 than those in middle school level, based on difference-in-differences analysis. Symptoms were reported by 37% of newly seropositive and 16% seronegative children. Fear of blood sampling (64%) was the most frequently reported reason for non-participation. CONCLUSIONS: Although the proportion of seropositive children increased from 1.5% in June-July 2020 to 16.4% in March-April 2021, few infections were likely associated with potential spread within schools. In March-April 2021, significant clustering of seropositive children within classes was observed only in the lower school level.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Prospective Studies , Schools , Seroepidemiologic Studies
6.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: covidwho-2088878

ABSTRACT

OBJECTIVES: To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS: The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS: In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION: In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin A , Prospective Studies , COVID-19/prevention & control , Immunoglobulin G , Immunoglobulin M , Antiviral Agents , Viral Proteins , RNA, Messenger
7.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: covidwho-2053515

ABSTRACT

BACKGROUNDNeutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated.METHODSWe conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7-11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends.RESULTSIn this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1-8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1-11; P = 0.034).CONCLUSIONOur data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT04869072.FUNDINGThis study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program "Comprehensive Genomic Pathogen Detection" of the University of Zurich.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive/adverse effects , Proof of Concept Study , COVID-19 Serotherapy
8.
AIDS ; 36(10): 1465-1468, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1961257

ABSTRACT

We identified determinants of SARS-CoV-2 mRNA vaccine antibody response in people with HIV (PWH). Antibody response was higher among PWH less than 60 years, with CD4+ cell count superior to 350 cells/µl and vaccinated with mRNA-1273 by Moderna compared with BNT162b2 by Pfizer-BioNTech. Preinfection with SARS-CoV-2 boosted the antibody response and smokers had an overall lower antibody response. Elderly PWH and those with low CD4+ cell count should be prioritized for booster vaccinations.


Subject(s)
COVID-19 , HIV Infections , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , Humans , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
9.
Clin Infect Dis ; 75(1): e585-e593, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886376

ABSTRACT

BACKGROUND: BNT162b2 by Pfizer-BioNTech and mRNA-1273 by Moderna are the most commonly used vaccines to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Head-to-head comparison of the efficacy of these vaccines in immunocompromised patients is lacking. METHODS: Parallel, 2-arm (allocation 1:1), open-label, noninferiority randomized clinical trial nested into the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study. People living with human immunodeficiency virus (PLWH) or solid organ transplant recipients (SOTR; ie, lung and kidney) from these cohorts were randomized to mRNA-1273 or BNT162b2. The primary endpoint was antibody response to SARS-CoV-2 spike (S1) protein receptor binding domain (Elecsys Anti-SARS-CoV-2 immunoassay, Roche; cutoff ≥0.8 units/mL) 12 weeks after first vaccination (ie, 8 weeks after second vaccination). In addition, antibody response was measured with the Antibody Coronavirus Assay 2 (ABCORA 2). RESULTS: A total of 430 patients were randomized and 412 were included in the intention-to-treat analysis (341 PLWH and 71 SOTR). The percentage of patients showing an immune response was 92.1% (95% confidence interval [CI]: 88.4-95.8; 186/202) for mRNA-1273 and 94.3% (95% CI: 91.2-97.4; 198/210) for BNT162b2 (difference: -2.2%; 95% CI: -7.1 to 2.7), fulfilling noninferiority of mRNA-1273. With the ABCORA 2 test, 89.1% had an immune response to mRNA-1273 (95% CI: 84.8-93.4; 180/202) and 89.5% to BNT162b2 (95% CI: 85.4-93.7; 188/210). Based on the Elecsys test, all PLWH had an antibody response (100.0%; 341/341), whereas for SOTR, only 60.6% (95% CI: 49.2-71.9; 43/71) had titers above the cutoff level. CONCLUSIONS: In immunocompromised patients, the antibody response of mRNA-1273 was noninferior to BNT162b2. PLWH had in general an antibody response, whereas a high proportion of SOTR had no antibody response.


Subject(s)
COVID-19 , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Humans , Immunocompromised Host , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
10.
Clin Infect Dis ; 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1831050

ABSTRACT

BACKGROUND: Vaccination may control the COVID-19 pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. METHODS: We studied an outbreak at a nursing home in Switzerland where vaccination uptake of mRNA vaccines against SARS-CoV-2 was 82% among residents as of Jan 21/2021. After a vaccinated symptomatic HCW was diagnosed with COVID-19 on Feb 22, we did an outbreak investigations in house A (47 residents, 37 HCWs) using SARS-CoV-2-specific PCR in nasopharyngeal swabs. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. RESULTS: We identified 17 individuals with positive PCR tests; ten residents (five vaccinated) and seven HCWs (three vaccinated). Median age among residents was 86 years (interquartile range [IQR] 70-90) and 49 years (IQR 29-59) among HCWs. Among the five vaccinated residents, 60% had mild disease and had 40% no symptoms, whereas all five unvaccinated residents had mild to severe disease and two died. The vaccine effectiveness for the prevention of infection among the residents was 73.0% (95% Cl 24.7-90.1). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals upon re-exposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (p=0.012). Transmission networks indicated four likely or possible transmissions from vaccinated to other individuals, and 12 transmission events from unvaccinated individuals. CONCLUSIONS: COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.

11.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712228

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
Transplant Cell Ther ; 28(4): 214.e1-214.e11, 2022 04.
Article in English | MEDLINE | ID: covidwho-1705633

ABSTRACT

Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Aged , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2 , Vaccination
13.
Nat Commun ; 12(1): 6703, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526075

ABSTRACT

Determination of SARS-CoV-2 antibody responses in the context of pre-existing immunity to circulating human coronavirus (HCoV) is critical for understanding protective immunity. Here we perform a multifactorial analysis of SARS-CoV-2 and HCoV antibody responses in pre-pandemic (N = 825) and SARS-CoV-2-infected donors (N = 389) using a custom-designed multiplex ABCORA assay. ABCORA seroprofiling, when combined with computational modeling, enables accurate definition of SARS-CoV-2 seroconversion and prediction of neutralization activity, and reveals intriguing interrelations with HCoV immunity. Specifically, higher HCoV antibody levels in SARS-CoV-2-negative donors suggest that pre-existing HCoV immunity may provide protection against SARS-CoV-2 acquisition. In those infected, higher HCoV activity is associated with elevated SARS-CoV-2 responses, indicating cross-stimulation. Most importantly, HCoV immunity may impact disease severity, as patients with high HCoV reactivity are less likely to require hospitalization. Collectively, our results suggest that HCoV immunity may promote rapid development of SARS-CoV-2-specific immunity, thereby underscoring the importance of exploring cross-protective responses for comprehensive coronavirus prevention.


Subject(s)
SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/metabolism , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/metabolism , Humans , Immunoglobulin G/metabolism
14.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
15.
Trials ; 22(1): 724, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1477452

ABSTRACT

BACKGROUND: Late 2019, a new highly contagious coronavirus SARS-CoV-2 has emerged in Wuhan, China, causing within 2 months a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e., Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform, we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorization in Switzerland in the frame of a pilot randomized controlled trial (RCT) while at the same time assessing the functionality of the trial platform. METHODS: We will conduct a multicenter randomized controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer/BioNTech) or the COVID-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD; baseline vs. 3 months after first vaccination; binary outcome, considering ≥ 0.8 units/ml as a positive antibody response). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e., duration of RCT set-up; time of patient recruitment; patient consent rate; proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups, we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favor of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, "COVID-19"). DISCUSSION: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. TRIAL REGISTRATION: ClinicalTrials.gov NCT04805125 . Registered on March 18, 2021.


Subject(s)
COVID-19 , Viral Vaccines , Aged , COVID-19 Vaccines , Humans , Immunocompromised Host , Multicenter Studies as Topic , Pilot Projects , RNA, Messenger , Randomized Controlled Trials as Topic , SARS-CoV-2
16.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1348674

ABSTRACT

Early identification and isolation of SARS-CoV-2-infected individuals is central to contain the COVID-19 pandemic. Nasopharyngeal swabs (NPS) serve as a specimen for detection by RT-PCR and rapid antigen screening tests. Saliva has been confirmed as a reliable alternative specimen for RT-PCR and has been shown to be valuable for diagnosing children and in repetitive mass testing due to its non-invasive collection. Combining the advantages of saliva with those of antigen tests would be highly attractive to further increase test capacities. Here, we evaluated the performance of the Elecsys SARS-CoV-2 Antigen assay (Roche) in RT-PCR-positive paired NPS and saliva samples (N = 87) and unpaired NPS (N = 100) with confirmed SARS-CoV-2 infection (Roche cobas SARS-CoV-2 IVD test). We observed a high positive percent agreement (PPA) of the antigen assay with RT-PCR in NPS, reaching 87.2% across the entire cohort, whereas the overall PPA for saliva was insufficient (40.2%). At Ct values ≤ 28, PPA were 100% and 91.2% for NPS and saliva, respectively. At lower viral loads, the sensitivity loss of the antigen assay in saliva was striking. At Ct values ≤ 35, the PPA for NPS remained satisfactory (91.5%), whereas the PPA for saliva dropped to 46.6%. In conclusion, saliva cannot be recommended as a reliable alternative to NPS for testing with the Elecsys Anti-SARS-CoV-2 Antigen assay. As saliva is successfully used broadly in combination with RT-PCR testing, it is critical to create awareness that suitability for RT-PCR cannot be translated to implementation in antigen assays without thorough evaluation of each individual test system.

17.
BMJ Open ; 11(7): e047483, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327666

ABSTRACT

OBJECTIVES: To determine the variation in SARS-CoV-2 seroprevalence in school children and the relationship with self-reported symptoms. DESIGN: Baseline measurements of a longitudinal cohort study (Ciao Corona) from June to July 2020. SETTING: 55 schools stratified by district in the canton of Zurich, Switzerland. PARTICIPANTS: 2585 children (1339 girls; median age: 11 years, age range: 6-16 years), attending grades 1-2, 4-5 and 7-8. MAIN OUTCOME MEASURES: Variation in seroprevalence of SARS-CoV-2 in children across 12 cantonal districts, schools and grades, assessed using Luminex-based test of four epitopes for IgG, IgA and IgM (Antibody Coronavirus Assay,ABCORA 2.0). Clustering of cases within classes. Association of seropositivity and symptoms. Comparison with seroprevalence in adult population, assessed using Luminex-based test of IgG and IgA (Sensitive Anti-SARS-CoV-2 Spike Trimer Immunoglobulin Serological test). RESULTS: Overall seroprevalence was 2.8% (95% CI 1.5% to 4.1%), ranging from 1.0% to 4.5% across districts. Seroprevalence in grades 1-2 was 3.8% (95% CI 2.0% to 6.1%), in grades 4-5 was 2.4% (95% CI 1.1% to 4.2%) and in grades 7-8 was 1.5% (95% CI 0.5% to 3.0%). At least one seropositive child was present in 36 of 55 (65%) schools and in 44 (34%) of 131 classes where ≥5 children and ≥50% of children within the class were tested. 73% of children reported COVID-19-compatible symptoms since January 2020, with the same frequency in seropositive and seronegative children for all symptoms. Seroprevalence of children and adults was similar (3.2%, 95% credible interval (CrI) 1.7% to 5.0% vs 3.6%, 95% CrI 1.7% to 5.4%). The ratio of confirmed SARS-CoV-2 cumulative incidence-to-seropositive cases was 1:89 in children and 1:12 in adults. CONCLUSIONS: SARS-CoV-2 seroprevalence was low in children and similar to that in adults by the end of June 2020. Very low ratio of diagnosed-to-seropositive children was observed. We did not detect clustering of SARS-CoV-2-seropositive children within classes, but the follow-up of this study will shed more light on transmission within schools. TRIAL REGISTRATION NUMBER: NCT04448717.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Antibodies, Viral , Child , Cohort Studies , Female , Humans , Longitudinal Studies , Schools , Seroepidemiologic Studies , Switzerland/epidemiology
18.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154452

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

19.
PLoS Biol ; 19(3): e3001006, 2021 03.
Article in English | MEDLINE | ID: covidwho-1148237

ABSTRACT

Since entering the human population, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; the causative agent of Coronavirus Disease 2019 [COVID-19]) has spread worldwide, causing >100 million infections and >2 million deaths. While large-scale sequencing efforts have identified numerous genetic variants in SARS-CoV-2 during its circulation, it remains largely unclear whether many of these changes impact adaptation, replication, or transmission of the virus. Here, we characterized 14 different low-passage replication-competent human SARS-CoV-2 isolates representing all major European clades observed during the first pandemic wave in early 2020. By integrating viral sequencing data from patient material, virus stocks, and passaging experiments, together with kinetic virus replication data from nonhuman Vero-CCL81 cells and primary differentiated human bronchial epithelial cells (BEpCs), we observed several SARS-CoV-2 features that associate with distinct phenotypes. Notably, naturally occurring variants in Orf3a (Q57H) and nsp2 (T85I) were associated with poor replication in Vero-CCL81 cells but not in BEpCs, while SARS-CoV-2 isolates expressing the Spike D614G variant generally exhibited enhanced replication abilities in BEpCs. Strikingly, low-passage Vero-derived stock preparation of 3 SARS-CoV-2 isolates selected for substitutions at positions 5/6 of E and were highly attenuated in BEpCs, revealing a key cell-specific function to this region. Rare isolate-specific deletions were also observed in the Spike furin cleavage site during Vero-CCL81 passage, but these were rapidly selected against in BEpCs, underscoring the importance of this site for SARS-CoV-2 replication in primary human cells. Overall, our study uncovers sequence features in SARS-CoV-2 variants that determine cell-specific replication and highlights the need to monitor SARS-CoV-2 stocks carefully when phenotyping newly emerging variants or potential variants of concern.


Subject(s)
SARS-CoV-2/physiology , Virus Replication/physiology , Amino Acid Substitution , Animals , Base Sequence , Bronchi/pathology , COVID-19/diagnosis , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Epithelial Cells/pathology , Epithelial Cells/virology , Furin/metabolism , Host-Pathogen Interactions , Humans , SARS-CoV-2/isolation & purification , Vero Cells
20.
Microorganisms ; 9(3)2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1143536

ABSTRACT

Rising demands for repetitive SARS-CoV-2 screens and mass testing necessitate additional test strategies. Saliva may serve as an alternative to nasopharyngeal swab (NPS) as its collection is simple, non-invasive and amenable for mass- and home testing, but its rigorous validation, particularly in children, is missing. We conducted a large-scale head-to-head comparison of SARS-CoV-2 detection by RT-PCR in saliva and NPS of 1270 adults and children reporting to outpatient test centers and an emergency unit. In total, 273 individuals were tested positive for SARS-CoV-2 in either NPS or saliva. SARS-CoV-2 RT-PCR results in the two specimens showed a high agreement (overall percent agreement = 97.8%). Despite lower viral loads in the saliva of both adults and children, detection of SARS-CoV-2 in saliva fared well compared to NPS (positive percent agreement = 92.5%). Importantly, in children, SARS-CoV-2 infections were more often detected in saliva than NPS (positive predictive value = 84.8%), underlining that NPS sampling in children can be challenging. The comprehensive parallel analysis reported here establishes saliva as a generally reliable specimen for the detection of SARS-CoV-2, with particular advantages for testing children, that is readily applicable to increase and facilitate repetitive and mass testing in adults and children.

SELECTION OF CITATIONS
SEARCH DETAIL